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AbslraEt By emphasizing a commonkinematic core at the expense of the specific dynamics 
appropriate to individual configurations a unified view is obtained of a large part of the 
field of interferometry whether using photons or material particles. The dnly restriction on 
thecoordinatesystemis thatthemetrictensor isindependent oftime. Witbin this framework 
a comparison is made of the main features'of various types of interferometer, and the 
effect of dispersion is'calculated for the type based on the ring laser oscillator. For a ring 
interferometeruringmaterial particles the particle propertime for acompletetmnsit around 
the ring is shown to be the same for both directions of travel and a paradoxical consequence 
is noticed 

1. Introduction 

Interferometry usinglight has long played an important role in elucidating fundamental 
aspects of physics in addition to providing useful tools in instrument technology. 
Recent years have seen the extension from light to material particles, with a correspond- 
ing widening of the field of fundamental aspects explored. Broadly speaking the 
dynamics of light interferometry is treated in terms of the electromagnetic equations 
and that of material particles is treated through a quantum mechanical wave equation, 
each experiniental afrangement being tackled afresh through an appropriately chosen 
dynamical theory. 

Although this degree of specialization is clearly needed if the fine detail is to be 
accommodated it is less useful in enabling the leading features of the various ConJigur- 
ations to be readily distinguished and compared.. For this purpose one seeks some 
common core and it is the theme of the present article that this can be achieved by 
emphasizing the kinematics at the expense of the dynamics. Of~course the dynamics 
cannot be completely avoided but certainly such specific details as are provided by 
Maxwell's electromagnetic equations or the quantum mechanical wave equations are 
not needed in the development although their consequences are useful for comparison 
purposes. 

The leading role accorded to the kinematics is reflected-in the fact that most of the 
development rests on the central result expressing the reciprocal of the coordinate 
speed of a photon or material particle in terms of an index of refraction. The only 
restriction on~the coordinate system is that the metric tensor is independent of time. 
Hence a wide range of gravitational effects and non-inertial motion of the interferometer 
can be discussed. 

From an extensive literature a useful review is given by Stedman (1985), certain 
quantum mechanical aspects are discussed by Dieks and~Nienhuis (1990) and a wide 
ranging view is taken by Anandan (1981). 
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It may be remarked that the initial motivation for the present article arose from a 
desire to confirm by other means the conclusion of an approximate electromagnetic 
calculation (Scorgie 1990) regarding the effects of non-inertial motion of an observer 
on the optical length of a given path in his 3-space. The perhaps surprising but widely 
accepted conclusion is that the effect of translational acceleration depends on the 
refractive index of matter traversed by the light and at rest in the observer's coordinate 
system whereas the effect of rotational motion is independent of the refractive index. 
The kinematic treatment readily shows how this arises as a first approximation. 

Two points of detail are relegated to the appendix. The first justifies equation (3) 
and the second remarks on the use of the concept of refractive index for the motion 
of a material particle. 

2. Kinematic relations 

The setting is that an observer in arbitrarymotion, and so using a non-inertial coordinate 
system, chooses his proper time T as coordinate time. The path of an entity in 3-space 
issupposed known and the primary objective is to calculate the coordinate time taken 
to traverse the path. Of course, interference is a wave phenomenon depending on 
phase difference rather than time difference; consequently a frequency is involved as 
wilI be discussed later. 

The term entity is intended to be non-committal: all that is required is that it should 
be possible to associate with it a proper time 7 which may of course be zero. The 
physics that distinguishes one entity from another is to be introduced in terms of a 
refractive index defined by analogy with light. Thus the problem is to find the coordinate 
speed in terms of the refractive index. 

The coordinates are xD and x4=cT with c the vacuum speed of light and T the 
time. Greek indices run from 1 to 4, Latin indices run from 1 to 3, and repeated indices 
indicate summation. The square of the element of interval is 

ds2 = g,. dx\" dx" +2gm4 dx'" dx4+ g,(dx4)'. (1) 
The metric tensor is independent of time and g, is negative. In the 3-space the square 
of the element of coordinate length is du2 = g,. dx" dx" leading to unit tangent 
A m  = dx"/du to the path of an entity having coordinate velocity U'" = uAm, the coordin- 
ate speed being U = du/dT. With .r denoting proper time of the entity, (1) gives 

- ( c dr/d T)z  = U' +~2cgm,A '"U + c2g,. (2) 
In the inertial frame that is momentarily comoving with the coordinate point occupied 
by the entity let t be the time and dp be the element of distance. Then what we may 
call the local inertial speed of the entity is v = dp/dt and we have the usual relation 

d t / d ~ = [ l - ( ~ / ~ ) ' J - ' ' ~  

together with 

By analogy with light it is convenient to define the refractive index n = c/u,  giving 
d t / d r =  n(n'- I)-"'. Then from (3) 

dp2 = 7". dx" dx" Ymn = gm. - g2gm4g"4. (3) 

(d.r/dT)'= (d~/dr)'(dt/dp)'(dp/dT)* 

= (n'- 1)[1 -g~(gm4A")2](u/c)2. (4) 
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Substituting in the left-hand side of (2) gives an equation for the coordinate speed, or 
rather it is preferable to find an equation for the reciprocal speed p, namely 

Czg,p2 +2cgm4Amp + f l z  - (n’ -  l)g~(g,,,4Am)2 = 0. 

1*=ICg,l-’Ig,4h~*n[lg,l+(g,,h m ) 2 1 112 I. 

(5) 

( 6 )  
This is indeed the central result, and the remainder of the paper consists of applications. 
Some general features may be noted at this point. The fact that reciprocal coordinate 
speed is expressible in,simple closed form means that the coordinate time of transit 
of an entity over a given path in the observer’s 3-space 

Since g,, is negative 

A T = j p d n  

is readily found, and from the structure~of (6)  the mode of contribution of various 
influences is evident. Of particular significance is the occurrence of the refractive index 
not as a factor of the entire expression but as a factor of only part of it. 

The concept of refractive index as a point function is natural for light since its 
speed at any point is determined solely by conditions there.,This cannot be true of a 
material particle since its speed depends on its history, and this aspect is discussed in 
the appendix. 

, .  
3. Aspects of interferometry 

Equation ( 6 )  is exact and is needed in pursuing detail, but for a broader view an 
approximation is useful. For an. observer in flat spacetime, having acceleration f and 
,using space axes rotating at angular velocity Q with respect to his local inertial frame, 
we have (Scorgie 1990) 

h = , ( g l , , g Z d r g ~ 4 ) = n x r l e  (7) 
the position vector in  his 3-space being r. 

(A’, A2, A3) =ar/du 
notation d denoting differentiation in which the basis vectors are held constant. 

g, = -[(I + r . f / c ’ ) ’ -  h’]. (9) 
The principal effect of a weak gravitational field is to add to the right-hand side of 
(9) the term 2$/c’, the (positive) gravitational potential being $, the value at the 
observer being taken as zero. Then to first order of small quantities 

lgJ1= l+2S  8 = ($ - r . f ) / c ’  (10) 

p c = h .  Jr/du* n ( l  + S )  P+’O p- < 0. (11) 

and (6)  gives 

This equation readily accounts for the leading aspects of interferometry in the presence 
of gravity and other non-inertial influences. Rotation of the observer’s space axes 
appears only in the first term in the right-hand side, and that term is independent of 
the refractive index. The observer’s translational acceleration, together with gravity, 
appears only in the second term which also contains the index of refraction as a factor. 
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For example it is now obvious that the previously mentioned conclusion regarding the 
effects of non-inertial motion on optical path length is confirmed and found to originate 
in kinematics rather than being peculiar to electromagnetism. 

A feature of particle interferometers is their extremely high refractive index com- 
pared with that of light: values of order lo5 are typical for slow neutrons. Hence 
particle interferometers have a marked advantage over those using light in experiments 
exploiting gravity or translational acceleration. On the other hand, at least on the basis 
of present considerations, there is nothing to choose between them if rotational effects 
are to be explored. 

But of course reciprocal speed is not the only quantity determining interference; 
since it is a wave phenomenon a frequency is needed to relate transit time, determined 
by reciprocal speed, to the phase of a wave. Thus for angular frequency OJ the phase 
increment is 

q = [ w p d u  (12) 

evaluated along the path in 3-space. Since the entire treatment is relativistic we associate 
with a particle of rest mass m the angular frequency 

(13) 
Since the refractive index for a material particle is very large w = m c Z / h  in (12). 
Consequently on a frequency basis particles are favoured over photons in the ratio 
particle rest energy to photon energy. 

However, even if both factors in (12) favour particles they are at a disadvantage 
when achievable path lengths are considered. A few centimetres may be typical for 
particles, whereas metrs or even kilometres can be contemplated for light. 

Rotational effects exploit the first term on the right-hand side of (11) and the 
configuration is a closed ring around which a pair of similar entities travel in opposite 
directions, interference being detected on their return to the common launch point. 

o = (mcz/h)[t - ( U / C ) ~ ] - ” ~ =  n(nz-l)-“2mc2/h. 

The transit times are 

and if the refractive index is a function of position alone the phase difference is 

A =  w(p++p-) du=4(w fc2)A. Cl (15) + 
the vector area of an open surface spanning the ring being A. This is of course the 
customary Sa&ac approximation and is independent of the refractive index. 

On the other hand gravitational and translational acceleration effects exploit the 
second term on the right-hand side of (11) and the open configuration is used. The 
two entities are launched simultaneously from a common point and travel on separate 
paths to another common point where interference in observed. The two limbs together 
from a closed ring and we have p+ on each, subscripts 1 and 2 distinguishing one 
limb from the other. The transit times are 

Tz= p2du2Z>0. I Tl=( pldul>O 

n,(l+S,) dul - n&+ 6,) duz I 
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the first integral being taken round the closed ring formed by the two limbs and the 
other integrals being taken along their respective limbs. For simplicity of illustration 
suppose that the refractive index and gravitational potential are constant on each limb 
although.the values may differ between the two limbs. 

c ( T  - G) = ( 2 / c ) n .  ~ + ~ ~ l ~ l - - n , ~ ~ , l + ~ ~ l ~ l ~ l  - n 2 4 d , ) ( c 2  

- ( n l w l  -n2u2p2) -f/c" (17) 

the  position^ vector of the centroid of a limb being p. 
Suppose 

n,u,-n,u2= En,ul [E [<<  1. (18) 

e(?,- TJ E ( 2 / c ) Q .  A +  ~ I ~ ~ I E + ~ - ~ [ ~ I - - Z - ( P ~ - P ~ )  'fl}. 
The phase aifference~is 

A =  A(n)+A(u) + A ( + ) + A (  f). 

The contribution from rotation is 

and as might be expected this is half of the corresponding contribution in the closed 
ring configuration. The contribution arising from imbalance between two limbs is 

A ( u ) = s n l u 1 w / c .  (21) 

The gravitational contribution is 

A(@) = n l u 1 4 h  - @2)/e3. 

The contribution from translational acceleration is 

A ( f ) = - n l a 1 w ( p , - ~ 3  . f /c ' .  (23) 

Since the objective of this configuration is to explore the effects of gravity and 
translational acceleration the other two contributions are unwelcome. Allowance could 
be made for the rotational term (caused by Earth's rotation perhaps) by measuring it 
 by a ring interferometer, but presumably we can only try to reduce the imbalance 
contribution as far as possible. Hence figures of merit are 

Earth's gravitational field of strength g provides, illustrative numbers. Suppose the 
difference of gravitational potential arises from a difference of height z, giving 

A ( + ) / A ( ~ )  = gz /EC2- (z /E )  x 10-18 (25) 

for z in centimetres. In a particle interferometer dimensions are likely to be a few 
centimetres, which implies a very poor figure of merit for gravitational measurements. 
Nevertheless such experiments have been successful (ColeIIa et a1 1975). k i s  perhaps 
significant that fringe shifts.were detected as the plane of the two limbs was rotated 
about a horizontal axis, since the imbalance contribution is likely to remain substantially 
unaltered, leaving the gravitational contribution to be detected. 
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The same numbers apply if we consider using the two-limb interferometer to measure 
translational acceleration of a magnitude equal to that of the Earth's field at the surface. 
In that case z becomes the projection, parallel to the acceleration, of the vector joining 
the centroids of the two limbs. Again a very poor figure of merit results from limb 
imbalance. Nevertheless proposals have been made (Clauser 1988) to measure both 
angular velocity and translational acceleration by means of six particle interferometers, 
one for each component of the two vectors. 

4. Dispersion in a ring laser oscillator 

In connection with (15) we have made the proviso 'if the refractive index is a function 
of position alone'. This condition wili not be satisfied in the ring laser oscillator if the 
material traversed by the two oppositely travelling beams is dispersive since their 
frequencies differ slightly. In obvious notation, with T+ and T- both positive, let 

o+-o-= Am w = $ ( o + + o - )  T+- T- = AT (26) 

The operating condition is o+T+ = w: T- which gives 

The transit times can be found from (ll), and defining 
P 

A(n) = n+- n- 

the integrals being evaluated around the ring, gives 

n = + ( n + +  n- )  A = u-l$ A(n) du 

-= A@ - (4/c).n.A+gA.(11)(1+F)do , ,  ,, 

0 8 n ( l +  6) d u  

the vector area closed by the ring being A. 
Neglecting gravity and translational acceleration gives 

_=-_ [ ( 4 / u c ) Q .  A+A]. 
o N  

In words: N is the mean value of the refractive index around the ring and A is the 
mean value, around the ring, ofthe difference between the two values of refractive index. 

To illustrate relative magnitudes suppose the angular velocity of the Earth, 7.29 x 
lo-' s-' is to be measured with an oscillator having a path of, say, 4 m, and an enclosed 
area of 1 m2. Then the first term in brackets in (30) is about 2 x  This indicates 
the sensitivity of the measurement to dispersion in the material traversed by the beams. 

Notice that (29) and (30) are implicit equations to determine the frequency 
difference because the difference between the refractive indices for the two beams is 
itself a function of the frequency difference. This purely computational point can 
obviously be handled by an iterative procedure. At its simplest, retaining only the first 
order term in a Taylor expansion of the refractive index about the mid frequency, an 
explicit equation could be written. 
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Hence T , ~  = - C - ~ Y ~ .  Since vpvP =-cz 
g"PT .- 7 B =-c-Z. 

g"'$,:,:p = (mc/h)'@ (35) 

(34) 
Introducing quantum mechanics, suppose the particle wavefunction satisfies the Klein- 
Gordon equation for the rest mass m 

and look for a solution I) = A eip. Then 

g"'(A.a:p -Arp,a~.p) = (me/ h)'A (36) 

P(A..rpp, +$Arp,=:p) =O.  (37) 
Adopting the geometrical optics approximation that derivatives of A can be ignored 
in (36) gives 

g"prp.,rp,p = -(mc/*)'. (38) 
Comparison of (38) and (34) suggests the identification p = ( m c Z / h ) r .  Indeed this 
identification is well known and has been employed for example by~stodolsky (1979) 
to obtain useful approximate results in a semiclassical treatment assuming the particle 
to travel on the exactly defined classical path. 

Combining this identification with the equality of particle proper &ne increments 
previously established by (32) for the closed ring interferometer, we would deduce 
equality of quantum mechanical phase increments for the two oppositely travelling 
particle streams. This in turn would paradoxically imply that they interfere construc- 
tively and independently of gravity and non-inertial motion of the interferometer. It 
seems that identification of quantum mechanical phase with propertime on the classical 
path of a particle has to be handled with some care. Forphotons, of course, this feature 
is absent since the proper time is zero and the pair of equations (34) and (38) is 
replaced by the single one which is (38) with the right-hand side replaced by zero. 

Although the present purpose has been to display the broad aspects at the expense 
of the precise detail, it is worth emphasizing that the central result (6) could be used 
to explore the consequences for interferometry in whatever degree of detail is desired. 
But of course this idea must not be pursued too far. The kinematic approach owes its 
simplicity to the fact that the specific dynamics is ignored. Thus it is inevitable that 
the dynamics of a particular situation will reveal additional features at least comparable 
numerically with the numbers that result from pressing (6) to high orders of  accuracy. 
For example, particle spin has been ignored. Also in the open path arrangement each 
limb must obviously include a least one deflector to guide the particle even though it 
is in free fall for the greater part of its tiajectory. In relying on the kinematic calculation 
one can only hope that bothlimbs are equally affected by the dynamics of deflection. 

Appendix 

1. Justifcation for equation (3) 

It is readily confirmed that (1) may be written in the Minkowskian form 

dsz=dp2-c2dt2 

dP2 = (gmn -gZgm.~nJ dx" dx" 
cZ dt2= (IgM["' an4- 1gM1-"2gma d P ) '  
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giving the interpretation that dp is the element of distance and d t  is the element of 
time in an inertial system momentarily comoving with the coordinate point in question. 

2. Refractive index for a free particle 

Equation (6) contains the refractive index and it is not immediately clear how this 
concept relates to the motion of a matesal particle since, unlike light, its velocity 
depends on its history. However, for a free particle it is easy to see how the history 
determines the refractive index to be used in (6). 

To this end let 5" be unit tangent to the geodesic traversed by the free particle. 
The history is~most aptly described by the equation for the cotangent 

the coefficients of the connection being 
P -1 PP 

r l r y  - zg ( g w  +g,,* - ge,,) 
a comma denoting partial differentiation. Then 

shows that, if the metric tensor is independent of a particular coordinate, the corres- 
ponding component of the cotangent is a constant of the motion, much as an ignorable 
coordinate in classical dynamics gives rise to a constant of the motion. In obvious 
notation 

5" = (dT/c dr)(uAm, c). 

Writing K-' for the constant value of f4, since time is our ignorable coordinate, gives 

2 dr/dT = K(ug,,,,hm + cg,). 

Substituting this relation into (2 )  gives an equation for the coordinate speed, or rather 
it is again preferable to find the reciprocal speed which takes the form of (6) with 
refractive index 

n=[l-KZlg,l]-"2. 

The  history of the particle enters through the constant K which can, of course, be 
determined at any chosen point on the free trajectory. 
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